Rozpoznání zápalu plic z RTG snímků - ViT model

22. 3. 2024 0:00 Jiří Raška

Vision Transformer model

Po nástupu GPT modelů se stala architektura transformerů velice oblíbenou i v jiných oblastech. Najednou vidíte tyhle modely založené na Attention všude. Nabízí se tedy vyzkoušet si je na vlastní kůži. A o tom bude tento článek.

Opět vycházím z datové sady Chest X-Ray Images (Pneumonia) stejně jako tomu bylo v předchozích článcích zabývajících se rozpoznáním zápalu plic z RTG snímků s využitím především konvolučních vrstev. V přípravě dat a následném vyhodnocení modelu jsem udělal drobné změny, proto je zde uvedu také.

V případě klasifikace obrazových dat se architektura transformerů přetavila na tzv. Vision Transformer. Schematických zobrazení najdete na webu jistě hodně, pro úvodní představu tohle je jeden z nich:

ViT

Jako předlohu pro implementaci modelu jsem využil především tento článek : Image classification with Vision Transformer

Opět vyzkouším napsat a trénovat model z čistého stolu a následně také jeden model dříve trénovaný na jiné datové sadě.

In [1]:


import sys
import os
import shutil
import warnings

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import tensorflow as tf
import tensorflow.keras as keras

from tensorflow.image import extract_patches

from keras.utils import image_dataset_from_directory
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.optimizers import AdamW
from keras import Input, Model
from keras import layers

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.utils.class_weight import compute_class_weight

import cv2

sns.set_style('darkgrid')

In [2]:


import random

random.seed(42)
np.random.seed(42)
tf.random.set_seed(42)
os.environ['PYTHONHASHSEED'] = str(42)
os.environ['TF_DETERMINISTIC_OPS'] = '1'

Příprava dat

Definice cest k datům a základních konstant platných pro celý článek:

In [3]:


DATA_ROOT = '/kaggle/input/chest-xray-pneumonia/chest_xray'

DATA_TRAIN = os.path.join(DATA_ROOT, "train")
DATA_VALID = os.path.join(DATA_ROOT, "val")
DATA_TEST  = os.path.join(DATA_ROOT, "test")

LABELS = ['NORMAL', 'PNEUMONIA']
IMAGE_SIZE = (224, 224)
PATCH_SIZE = 16
BATCH_SIZE = 32

Tady je funkce pro načtení obrázků a jejich label z adresářové struktury datové sady. Provádí se konverze do jedné barvy nebo RGB, a také přizpůsobení na jedno rozlišení.

In [4]:


def get_datasource(*data_dirs, flag=cv2.IMREAD_GRAYSCALE):
    x, y = list(), list()
    for data_dir in data_dirs:
        for i, label in enumerate(LABELS):
            path = os.path.join(data_dir, label)
            target = [0] * len(LABELS)
            target[i] = 1
            for img in os.listdir(path):
                if img.endswith(".jpeg"):
                    img_arr = cv2.imread(os.path.join(path, img), flag)
                    resized_arr = cv2.resize(img_arr, IMAGE_SIZE)
                    x.append(resized_arr)
                    y.append(target)
    return np.array(x) / 255, np.array(y)

A následně si tedy data načtu do interní paměti. Rozdělení na trénovací a validační sadu si udělám následně při trénování v poměru 80:20.

In [5]:


x_train, y_train = get_datasource(DATA_TRAIN, DATA_VALID)
x_test, y_test = get_datasource(DATA_TEST)

x_train = np.expand_dims(x_train, axis=-1)
x_test  = np.expand_dims(x_test, axis=-1)

Zde je poněkud jiný přístup k „vylepšení“ obrázků v průběhu trénování. V tomto případě jsem použil aktuálně prosazovanou variantu zařazení těchto kroků do samotného modelu jako jednu z úvodních vrstev. Vytvořím tedy sekvenční model s vrstvami dělajícími právě ty požadované změny:

In [6]:


data_augmentation = keras.Sequential([
        layers.Normalization(),
        layers.RandomFlip("horizontal"),
        layers.RandomRotation(factor=0.2),
        layers.RandomZoom(height_factor=0.2, width_factor=0.2),
    ], name="data_augmentation")

data_augmentation.layers[0].adapt(x_train)

Vrstva pro normalizaci se musí před použitím přizpůsobit konkrétní datové sadě. Proto to volání metody adapt() na první vrstvě modelu.

Framework pro vyhodnocení modelu

Takto vypadá mírně upravený framework pro vyhodnocení modelů. Změnou je především použití jinak nastaveného optimazer pro minimalizaci ztrátové funkce. No a pak je tam ta drobnost s dělením na trénovací a validační sadu.

In [8]:


LEARNING_RATE = 0.001
WEIGHT_DECAY = 0.0001

def evaluate_model(model, *, epochs=40, batch_size=32, forced_training=False):

    print(f"=== MODEL EVALUATION =================================================\n")

    optimizer = AdamW(learning_rate=LEARNING_RATE, weight_decay=WEIGHT_DECAY)

    model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy', 'AUC'])
    model.summary()

    MODEL_CHECKPOINT = f"/kaggle/working/model/{model.name}.ckpt"

    if not os.path.exists(MODEL_CHECKPOINT) or forced_training:
        print(f"\n--- Model training ---------------------------------------------------\n")

        shutil.rmtree(MODEL_CHECKPOINT, ignore_errors=True)

        callbacks_list = [
            keras.callbacks.EarlyStopping(
                monitor='val_auc',
                patience=10),
            keras.callbacks.ModelCheckpoint(
                filepath=MODEL_CHECKPOINT,
                monitor='val_auc',
                save_best_only=True,
                mode='max',
                verbose=1)
        ]
        history = model.fit(
            x=x_train,
            y=y_train,
            epochs=epochs,
            callbacks=callbacks_list,
            validation_split=0.2,
            verbose=1)

        print(f"\n--- Training history -------------------------------------------------\n")

        fig, ax = plt.subplots(1, 2, figsize=(16, 4))
        sns.lineplot(data={k: history.history[k] for k in ('loss', 'val_loss')}, ax=ax[0])
        sns.lineplot(data={k: history.history[k] for k in history.history.keys() if k not in ('loss', 'val_loss')}, ax=ax[1])
        plt.show()

    else:
        print(f"\n--- Model is already trainded ... loading ----------------------------\n")

    model.load_weights(MODEL_CHECKPOINT)

    print(f"\n--- Test Predictions and Metrics -------------------------------------\n")

    y_pred = model.predict(x_test, verbose=0)

    plt.figure(figsize=(6, 3))
    heatmap = sns.heatmap(confusion_matrix(np.argmax(y_test, axis=-1),  np.argmax(y_pred, axis=-1)), annot=True, fmt="d", cbar=True)
    heatmap.yaxis.set_ticklabels(LABELS, rotation=90, ha='right')
    heatmap.xaxis.set_ticklabels(LABELS, rotation=0, ha='right')
    heatmap.axes.set_ylabel('True label')
    heatmap.axes.set_xlabel('Predicted label')
    plt.show()

    print()
    print(classification_report(np.argmax(y_test, axis=-1), np.argmax(y_pred, axis=-1), target_names=LABELS, zero_division=0))

    print(f"\n=== MODEL EVALUATION FINISHED ========================================")

    return y_pred

ViT model z čistého stolu

Nevím jak to máte vy, ale já si každou novou věc potřebuji osahat vlastníma rukama abych pochopil, jak to vlastně funguje. A o tom je primárně tato kapitola.

Originální transformer model vychází z toho, že potřebuje na vstupu sekvenci token. V případě obrázků to autoři navrhli tak, že si původní obrázek rozsekali na malé čtverečky o stejní velikosti (říká se tomu patch). Velikost čtverečku je dána zvolenou konstantou, v mém případě je to 16×16 bodů. Obvykle se to dělá například takto:

In [9]:


class Patches(layers.Layer):
    def __init__(self, patch_size, **kwargs):
        super().__init__(**kwargs)
        self.patch_size = patch_size

    def call(self, images):

        patches = extract_patches(images=images,
                                  sizes=[1, self.patch_size, self.patch_size, 1],
                                  strides=[1, self.patch_size, self.patch_size, 1],
                                  rates=[1, 1, 1, 1],
                                  padding='VALID')
        b = tf.shape(patches)[0]
        h = tf.shape(patches)[1]
        w = tf.shape(patches)[2]
        p = tf.shape(patches)[3]
        return tf.reshape(patches, (b, h * w, p))

    def get_config(self):
        config = super().get_config()
        config.update({"patch_size": self.patch_size})
        return config

Pro lepší představu, takhle vypadá výsledek rozsekání:

In [10]:


patches = Patches(PATCH_SIZE)(x_test)

In [11]:


plt.figure(figsize=(4, 4))
image = x_test[0]*255.
plt.imshow((image).astype("uint8"), cmap='gray')
plt.axis("off")

Out[11]:


(-0.5, 223.5, 223.5, -0.5)

__results___20_1.png

In [12]:


n = int(np.sqrt(patches.shape[1]))
plt.figure(figsize=(4, 4))
for i, patch in enumerate(patches[0].numpy()):
    ax = plt.subplot(n, n, i + 1)
    patch *= 255.
    patch_img = patch.reshape((PATCH_SIZE, PATCH_SIZE, 1))
    plt.imshow(patch_img.astype("uint8"), cmap='gray')
    plt.axis("off")
plt.show()

__results___21_0.png

Jestli vám stejně jako mně připadá, že se změnily odstíny šedi, tak vězte, že to je optický klam způsobený těmi bílými rámečky. Kontroloval jsem to.

Z jednoho obrázku tak vznikne sekvence patchů.

Druhým krokem je lineární projekce těchto patchů do interní reprezentace. Konkrétně v mém případě je každý patch velký 256 dimenzí (můžete si to představit jako vektor). A ten je projektován na vektor o 64 dimenzích. Navíc se ještě pro každý patch vezme jeho pořadové číslo v sekvenci, a to je opět projektováno do 64 dimenzionálního vektoru. No a na závěr se oba tyto vektory sečtou. Jen pro upřesnění, projekce patch i jejich pořadových čísel je předmětem učení, takže by se měly optimálně nastavit při trénování sítě.

Takto by mohla vypadat implementace takové vrstvy:

In [13]:


class PatchEncoder(layers.Layer):
    def __init__(self, projection_dim, **kwargs):
        super().__init__(**kwargs)
        self.projection_dim = projection_dim

    def build(self, input_shape):
        self.patches = input_shape[-2]
        self.projection = layers.Dense(units=self.projection_dim)
        self.position_embedding = layers.Embedding(input_dim=self.patches, output_dim=self.projection_dim)

    def call(self, patch):
        projected = self.projection(patch);
        encoded = self.position_embedding(np.expand_dims(np.arange(0, self.patches), axis=0))
        return projected + encoded

    def get_config(self):
        config = super().get_config()
        config.update({"projection_dim": self.projection_dim})
        return config

Nyní se již dostávám k implementaci samotného modelu. Asi nejdříve ukážu zdrojový text, a pak několik poznámek k němu:

In [14]:


PROJECTION_DIMENSION = 64

ATTENTION_HEADS = 4
TRANSFORMER_LAYERS = 8
TRANSFORMER_UNITS = [
    PROJECTION_DIMENSION * 2,
    PROJECTION_DIMENSION,
]
MLP_HEAD_UNITS = [1024, 512]


def create_model_ViT(X_shape, classes=2, name="ViT"):

    def mlp(x, hidden_units, dropout_rate=0.3, name=""):
        for i, units in enumerate(hidden_units):
            x = layers.Dense(units, activation=keras.activations.gelu, name=f"{name}_{i}_dense")(x)
            x = layers.Dropout(dropout_rate, name=f"{name}_{i}_dropout")(x)
        return x

    inputs = layers.Input(X_shape[-3:], name='inputs')

    augmented = data_augmentation(inputs)

    patches = Patches(PATCH_SIZE, name=f'patches')(augmented)
    encoded_patches = PatchEncoder(PROJECTION_DIMENSION, name=f'patch_encoder')(patches)

    for i in range(TRANSFORMER_LAYERS):
        x1 = layers.LayerNormalization(epsilon=1e-6, name=f"normalization_a_{i}")(encoded_patches)
        attention_output  = layers.MultiHeadAttention(
            num_heads=ATTENTION_HEADS,
            key_dim=PROJECTION_DIMENSION,
            dropout=0.1,
            name=f"multihead_attention_{i}"
        )(x1, x1)
        x2 = layers.Add(name=f"skip_a_{i}")([attention_output , encoded_patches])
        x3 = layers.LayerNormalization(epsilon=1e-6, name=f"normalization_b_{i}")(x2)
        x3 = mlp(x3, hidden_units=TRANSFORMER_UNITS, dropout_rate=0.1, name=f"mlp_{i}")
        encoded_patches = layers.Add(name=f"skip_b_{i}")([x3, x2])

    representation = layers.LayerNormalization(epsilon=1e-6, name=f"representation_norm")(encoded_patches)
    representation = layers.Flatten(name=f"representation_flatten")(representation)
    representation = layers.Dropout(0.5, name="representation_dropout")(representation)

    x = mlp(representation, MLP_HEAD_UNITS, name="dense")
    outputs = layers.Dense(classes, activation='softmax', name='outputs')(x)

    return Model(inputs=inputs, outputs=outputs, name=name)

V tomto modelu již žádnou konvoluci nenajdete. Vše je primárně postaveno na Multi-head Self Attention vrstvách.

Pokud se podíváte na implementaci, pak postupně uvidíte:

  • Úvodní vrstvu pro přizpůsobení obrázků před učením (viz. sekvenční model data_augmentation v sekci o přípravě dat)

  • Následně se z obrázku udělá sekvence patchů

  • V dalším kroku jsou patche převedeny do interní reprezentace včetně zakódování jejich pozice v sekvenci (interní reprezentace PROJECTION_DIMENSION).

  • Dostávám se k jádru celého modelu – posloupnost transformer bloků (v mém případě jich bude TRANSFORER_LAYERS)

    • V každém bloku se nejdříve udělá normalizace v rámci batch

    • Následuje MultiHeadAttention vrstva s počtem ATTENTION_HEADS hlav a velikosti klíče i hodnoty odpovídající interní reprezentaci PROJECTION_DIMENSION. Jedná se o self-attention, takže vstupy pro dotaz i klíč jsou stejné vektory.

    • Dále se přidá reziduální cesta pro tok původního vektoru (tady odkazuji na modely ResNet)

    • Dalším krokem je normalizace a MLP vrstva. V té jsou vektory postupně rozšířeny na dvojnásobnou velikost, aby byly v zapěti opět transformovány zpět do velikosti PROJECTION_DIMENSION. Za zmínku stojí i použití aktivační funkce GELU.

    • A na závěr se opět doplňuje reziduální zkratka před MLP vrstvy.

  • Celý model je pak zakončen již obvyklou sekvencí. Provede se normalizace, převedení do jednoho rozměru v rámci batch (vrstva Flatten), následuje několik plně propojených vrstev, a na závěr klasifikační vrstva s aktivací softmax.

  • A to je vše.

Rovnou si to můžu vyzkoušet:

In [15]:


y_pred = evaluate_model(create_model_ViT(x_train.shape, 2), forced_training=True)
=== MODEL EVALUATION =================================================

Model: "ViT"
__________________________________________________________________________________________________
 Layer (type)                Output Shape                 Param #   Connected to
==================================================================================================
 inputs (InputLayer)         [(None, 224, 224, 1)]        0         []
 data_augmentation (Sequent  (None, 224, 224, 1)          3         ['inputs[0][0]']
 ial)
 patches (Patches)           (None, 196, 256)             0         ['data_augmentation[0][0]']
 patch_encoder (PatchEncode  (None, 196, 64)              28992     ['patches[0][0]']
 r)
 normalization_a_0 (LayerNo  (None, 196, 64)              128       ['patch_encoder[0][0]']
 rmalization)
 multihead_attention_0 (Mul  (None, 196, 64)              66368     ['normalization_a_0[0][0]',
 tiHeadAttention)                                                    'normalization_a_0[0][0]']
 skip_a_0 (Add)              (None, 196, 64)              0         ['multihead_attention_0[0][0]'
                                                                    , 'patch_encoder[0][0]']
 normalization_b_0 (LayerNo  (None, 196, 64)              128       ['skip_a_0[0][0]']
 rmalization)
 mlp_0_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_0[0][0]']
 mlp_0_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_0_0_dense[0][0]']
 mlp_0_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_0_0_dropout[0][0]']
 mlp_0_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_0_1_dense[0][0]']
 skip_b_0 (Add)              (None, 196, 64)              0         ['mlp_0_1_dropout[0][0]',
                                                                     'skip_a_0[0][0]']
 normalization_a_1 (LayerNo  (None, 196, 64)              128       ['skip_b_0[0][0]']
 rmalization)
 multihead_attention_1 (Mul  (None, 196, 64)              66368     ['normalization_a_1[0][0]',
 tiHeadAttention)                                                    'normalization_a_1[0][0]']
 skip_a_1 (Add)              (None, 196, 64)              0         ['multihead_attention_1[0][0]'
                                                                    , 'skip_b_0[0][0]']
 normalization_b_1 (LayerNo  (None, 196, 64)              128       ['skip_a_1[0][0]']
 rmalization)
 mlp_1_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_1[0][0]']
 mlp_1_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_1_0_dense[0][0]']
 mlp_1_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_1_0_dropout[0][0]']
 mlp_1_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_1_1_dense[0][0]']
 skip_b_1 (Add)              (None, 196, 64)              0         ['mlp_1_1_dropout[0][0]',
                                                                     'skip_a_1[0][0]']
 normalization_a_2 (LayerNo  (None, 196, 64)              128       ['skip_b_1[0][0]']
 rmalization)
 multihead_attention_2 (Mul  (None, 196, 64)              66368     ['normalization_a_2[0][0]',
 tiHeadAttention)                                                    'normalization_a_2[0][0]']
 skip_a_2 (Add)              (None, 196, 64)              0         ['multihead_attention_2[0][0]'
                                                                    , 'skip_b_1[0][0]']
 normalization_b_2 (LayerNo  (None, 196, 64)              128       ['skip_a_2[0][0]']
 rmalization)
 mlp_2_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_2[0][0]']
 mlp_2_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_2_0_dense[0][0]']
 mlp_2_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_2_0_dropout[0][0]']
 mlp_2_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_2_1_dense[0][0]']
 skip_b_2 (Add)              (None, 196, 64)              0         ['mlp_2_1_dropout[0][0]',
                                                                     'skip_a_2[0][0]']
 normalization_a_3 (LayerNo  (None, 196, 64)              128       ['skip_b_2[0][0]']
 rmalization)
 multihead_attention_3 (Mul  (None, 196, 64)              66368     ['normalization_a_3[0][0]',
 tiHeadAttention)                                                    'normalization_a_3[0][0]']
 skip_a_3 (Add)              (None, 196, 64)              0         ['multihead_attention_3[0][0]'
                                                                    , 'skip_b_2[0][0]']
 normalization_b_3 (LayerNo  (None, 196, 64)              128       ['skip_a_3[0][0]']
 rmalization)
 mlp_3_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_3[0][0]']
 mlp_3_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_3_0_dense[0][0]']
 mlp_3_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_3_0_dropout[0][0]']
 mlp_3_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_3_1_dense[0][0]']
 skip_b_3 (Add)              (None, 196, 64)              0         ['mlp_3_1_dropout[0][0]',
                                                                     'skip_a_3[0][0]']
 normalization_a_4 (LayerNo  (None, 196, 64)              128       ['skip_b_3[0][0]']
 rmalization)
 multihead_attention_4 (Mul  (None, 196, 64)              66368     ['normalization_a_4[0][0]',
 tiHeadAttention)                                                    'normalization_a_4[0][0]']
 skip_a_4 (Add)              (None, 196, 64)              0         ['multihead_attention_4[0][0]'
                                                                    , 'skip_b_3[0][0]']
 normalization_b_4 (LayerNo  (None, 196, 64)              128       ['skip_a_4[0][0]']
 rmalization)
 mlp_4_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_4[0][0]']
 mlp_4_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_4_0_dense[0][0]']
 mlp_4_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_4_0_dropout[0][0]']
 mlp_4_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_4_1_dense[0][0]']
 skip_b_4 (Add)              (None, 196, 64)              0         ['mlp_4_1_dropout[0][0]',
                                                                     'skip_a_4[0][0]']
 normalization_a_5 (LayerNo  (None, 196, 64)              128       ['skip_b_4[0][0]']
 rmalization)
 multihead_attention_5 (Mul  (None, 196, 64)              66368     ['normalization_a_5[0][0]',
 tiHeadAttention)                                                    'normalization_a_5[0][0]']
 skip_a_5 (Add)              (None, 196, 64)              0         ['multihead_attention_5[0][0]'
                                                                    , 'skip_b_4[0][0]']
 normalization_b_5 (LayerNo  (None, 196, 64)              128       ['skip_a_5[0][0]']
 rmalization)
 mlp_5_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_5[0][0]']
 mlp_5_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_5_0_dense[0][0]']
 mlp_5_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_5_0_dropout[0][0]']
 mlp_5_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_5_1_dense[0][0]']
 skip_b_5 (Add)              (None, 196, 64)              0         ['mlp_5_1_dropout[0][0]',
                                                                     'skip_a_5[0][0]']
 normalization_a_6 (LayerNo  (None, 196, 64)              128       ['skip_b_5[0][0]']
 rmalization)
 multihead_attention_6 (Mul  (None, 196, 64)              66368     ['normalization_a_6[0][0]',
 tiHeadAttention)                                                    'normalization_a_6[0][0]']
 skip_a_6 (Add)              (None, 196, 64)              0         ['multihead_attention_6[0][0]'
                                                                    , 'skip_b_5[0][0]']
 normalization_b_6 (LayerNo  (None, 196, 64)              128       ['skip_a_6[0][0]']
 rmalization)
 mlp_6_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_6[0][0]']
 mlp_6_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_6_0_dense[0][0]']
 mlp_6_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_6_0_dropout[0][0]']
 mlp_6_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_6_1_dense[0][0]']
 skip_b_6 (Add)              (None, 196, 64)              0         ['mlp_6_1_dropout[0][0]',
                                                                     'skip_a_6[0][0]']
 normalization_a_7 (LayerNo  (None, 196, 64)              128       ['skip_b_6[0][0]']
 rmalization)
 multihead_attention_7 (Mul  (None, 196, 64)              66368     ['normalization_a_7[0][0]',
 tiHeadAttention)                                                    'normalization_a_7[0][0]']
 skip_a_7 (Add)              (None, 196, 64)              0         ['multihead_attention_7[0][0]'
                                                                    , 'skip_b_6[0][0]']
 normalization_b_7 (LayerNo  (None, 196, 64)              128       ['skip_a_7[0][0]']
 rmalization)
 mlp_7_0_dense (Dense)       (None, 196, 128)             8320      ['normalization_b_7[0][0]']
 mlp_7_0_dropout (Dropout)   (None, 196, 128)             0         ['mlp_7_0_dense[0][0]']
 mlp_7_1_dense (Dense)       (None, 196, 64)              8256      ['mlp_7_0_dropout[0][0]']
 mlp_7_1_dropout (Dropout)   (None, 196, 64)              0         ['mlp_7_1_dense[0][0]']
 skip_b_7 (Add)              (None, 196, 64)              0         ['mlp_7_1_dropout[0][0]',
                                                                     'skip_a_7[0][0]']
 representation_norm (Layer  (None, 196, 64)              128       ['skip_b_7[0][0]']
 Normalization)
 representation_flatten (Fl  (None, 12544)                0         ['representation_norm[0][0]']
 atten)
 representation_dropout (Dr  (None, 12544)                0         ['representation_flatten[0][0]
 opout)                                                             ']
 dense_0_dense (Dense)       (None, 1024)                 1284608   ['representation_dropout[0][0]
                                                          0         ']
 dense_0_dropout (Dropout)   (None, 1024)                 0         ['dense_0_dense[0][0]']
 dense_1_dense (Dense)       (None, 512)                  524800    ['dense_0_dropout[0][0]']
 dense_1_dropout (Dropout)   (None, 512)                  0         ['dense_1_dense[0][0]']
 outputs (Dense)             (None, 2)                    1026      ['dense_1_dropout[0][0]']
==================================================================================================
Total params: 14066629 (53.66 MB)
Trainable params: 14066626 (53.66 MB)
Non-trainable params: 3 (16.00 Byte)
__________________________________________________________________________________________________

--- Model training ---------------------------------------------------

Epoch 1/40
131/131 [==============================] - ETA: 0s - loss: 1.0398 - accuracy: 0.7508 - auc: 0.8108
Epoch 1: val_auc improved from -inf to 0.99240, saving model to /kaggle/working/model/ViT.ckpt
131/131 [==============================] - 58s 217ms/step - loss: 1.0398 - accuracy: 0.7508 - auc: 0.8108 - val_loss: 0.1607 - val_accuracy: 0.9733 - val_auc: 0.9924
Epoch 2/40
131/131 [==============================] - ETA: 0s - loss: 0.4132 - accuracy: 0.8301 - auc: 0.9050
Epoch 2: val_auc did not improve from 0.99240
131/131 [==============================] - 10s 74ms/step - loss: 0.4132 - accuracy: 0.8301 - auc: 0.9050 - val_loss: 0.2742 - val_accuracy: 0.8883 - val_auc: 0.9616
Epoch 3/40
131/131 [==============================] - ETA: 0s - loss: 0.3558 - accuracy: 0.8490 - auc: 0.9242
Epoch 3: val_auc did not improve from 0.99240
131/131 [==============================] - 10s 74ms/step - loss: 0.3558 - accuracy: 0.8490 - auc: 0.9242 - val_loss: 0.4887 - val_accuracy: 0.7641 - val_auc: 0.8657
Epoch 4/40
131/131 [==============================] - ETA: 0s - loss: 0.3348 - accuracy: 0.8571 - auc: 0.9334
Epoch 4: val_auc improved from 0.99240 to 0.99294, saving model to /kaggle/working/model/ViT.ckpt
131/131 [==============================] - 25s 193ms/step - loss: 0.3348 - accuracy: 0.8571 - auc: 0.9334 - val_loss: 0.0967 - val_accuracy: 0.9637 - val_auc: 0.9929
Epoch 5/40
131/131 [==============================] - ETA: 0s - loss: 0.2978 - accuracy: 0.8769 - auc: 0.9470
Epoch 5: val_auc did not improve from 0.99294
131/131 [==============================] - 10s 74ms/step - loss: 0.2978 - accuracy: 0.8769 - auc: 0.9470 - val_loss: 0.1804 - val_accuracy: 0.9274 - val_auc: 0.9825
Epoch 6/40
131/131 [==============================] - ETA: 0s - loss: 0.2834 - accuracy: 0.8824 - auc: 0.9519
Epoch 6: val_auc did not improve from 0.99294
131/131 [==============================] - 10s 75ms/step - loss: 0.2834 - accuracy: 0.8824 - auc: 0.9519 - val_loss: 0.1286 - val_accuracy: 0.9484 - val_auc: 0.9908
Epoch 7/40
131/131 [==============================] - ETA: 0s - loss: 0.2666 - accuracy: 0.8939 - auc: 0.9576
Epoch 7: val_auc did not improve from 0.99294
131/131 [==============================] - 10s 74ms/step - loss: 0.2666 - accuracy: 0.8939 - auc: 0.9576 - val_loss: 0.3550 - val_accuracy: 0.8281 - val_auc: 0.9260
Epoch 8/40
131/131 [==============================] - ETA: 0s - loss: 0.2461 - accuracy: 0.8989 - auc: 0.9637
Epoch 8: val_auc did not improve from 0.99294
131/131 [==============================] - 10s 74ms/step - loss: 0.2461 - accuracy: 0.8989 - auc: 0.9637 - val_loss: 0.1238 - val_accuracy: 0.9551 - val_auc: 0.9921
Epoch 9/40
131/131 [==============================] - ETA: 0s - loss: 0.2247 - accuracy: 0.9102 - auc: 0.9696
Epoch 9: val_auc improved from 0.99294 to 0.99643, saving model to /kaggle/working/model/ViT.ckpt
131/131 [==============================] - 25s 195ms/step - loss: 0.2247 - accuracy: 0.9102 - auc: 0.9696 - val_loss: 0.0777 - val_accuracy: 0.9666 - val_auc: 0.9964
Epoch 10/40
131/131 [==============================] - ETA: 0s - loss: 0.2230 - accuracy: 0.9097 - auc: 0.9704
Epoch 10: val_auc did not improve from 0.99643
131/131 [==============================] - 10s 74ms/step - loss: 0.2230 - accuracy: 0.9097 - auc: 0.9704 - val_loss: 0.1530 - val_accuracy: 0.9398 - val_auc: 0.9870
Epoch 11/40
131/131 [==============================] - ETA: 0s - loss: 0.2184 - accuracy: 0.9188 - auc: 0.9711
Epoch 11: val_auc did not improve from 0.99643
131/131 [==============================] - 10s 75ms/step - loss: 0.2184 - accuracy: 0.9188 - auc: 0.9711 - val_loss: 0.2205 - val_accuracy: 0.9121 - val_auc: 0.9704
Epoch 12/40
131/131 [==============================] - ETA: 0s - loss: 0.2044 - accuracy: 0.9204 - auc: 0.9744
Epoch 12: val_auc improved from 0.99643 to 0.99653, saving model to /kaggle/working/model/ViT.ckpt
131/131 [==============================] - 25s 193ms/step - loss: 0.2044 - accuracy: 0.9204 - auc: 0.9744 - val_loss: 0.0845 - val_accuracy: 0.9675 - val_auc: 0.9965
Epoch 13/40
131/131 [==============================] - ETA: 0s - loss: 0.2164 - accuracy: 0.9145 - auc: 0.9720
Epoch 13: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 75ms/step - loss: 0.2164 - accuracy: 0.9145 - auc: 0.9720 - val_loss: 0.1675 - val_accuracy: 0.9360 - val_auc: 0.9828
Epoch 14/40
131/131 [==============================] - ETA: 0s - loss: 0.2124 - accuracy: 0.9221 - auc: 0.9724
Epoch 14: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 74ms/step - loss: 0.2124 - accuracy: 0.9221 - auc: 0.9724 - val_loss: 0.3291 - val_accuracy: 0.8596 - val_auc: 0.9350
Epoch 15/40
131/131 [==============================] - ETA: 0s - loss: 0.1911 - accuracy: 0.9274 - auc: 0.9777
Epoch 15: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 74ms/step - loss: 0.1911 - accuracy: 0.9274 - auc: 0.9777 - val_loss: 0.3687 - val_accuracy: 0.8329 - val_auc: 0.9164
Epoch 16/40
131/131 [==============================] - ETA: 0s - loss: 0.1882 - accuracy: 0.9293 - auc: 0.9781
Epoch 16: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 75ms/step - loss: 0.1882 - accuracy: 0.9293 - auc: 0.9781 - val_loss: 0.2271 - val_accuracy: 0.9074 - val_auc: 0.9685
Epoch 17/40
131/131 [==============================] - ETA: 0s - loss: 0.1993 - accuracy: 0.9192 - auc: 0.9762
Epoch 17: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 74ms/step - loss: 0.1993 - accuracy: 0.9192 - auc: 0.9762 - val_loss: 0.2424 - val_accuracy: 0.9054 - val_auc: 0.9676
Epoch 18/40
131/131 [==============================] - ETA: 0s - loss: 0.1945 - accuracy: 0.9228 - auc: 0.9768
Epoch 18: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 74ms/step - loss: 0.1945 - accuracy: 0.9228 - auc: 0.9768 - val_loss: 0.1629 - val_accuracy: 0.9389 - val_auc: 0.9838
Epoch 19/40
131/131 [==============================] - ETA: 0s - loss: 0.1923 - accuracy: 0.9302 - auc: 0.9774
Epoch 19: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 75ms/step - loss: 0.1923 - accuracy: 0.9302 - auc: 0.9774 - val_loss: 0.1151 - val_accuracy: 0.9532 - val_auc: 0.9941
Epoch 20/40
131/131 [==============================] - ETA: 0s - loss: 0.2003 - accuracy: 0.9233 - auc: 0.9761
Epoch 20: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 74ms/step - loss: 0.2003 - accuracy: 0.9233 - auc: 0.9761 - val_loss: 0.2535 - val_accuracy: 0.8835 - val_auc: 0.9609
Epoch 21/40
131/131 [==============================] - ETA: 0s - loss: 0.1861 - accuracy: 0.9333 - auc: 0.9786
Epoch 21: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 74ms/step - loss: 0.1861 - accuracy: 0.9333 - auc: 0.9786 - val_loss: 0.2518 - val_accuracy: 0.9140 - val_auc: 0.9685
Epoch 22/40
131/131 [==============================] - ETA: 0s - loss: 0.1793 - accuracy: 0.9333 - auc: 0.9805
Epoch 22: val_auc did not improve from 0.99653
131/131 [==============================] - 10s 78ms/step - loss: 0.1793 - accuracy: 0.9333 - auc: 0.9805 - val_loss: 0.2415 - val_accuracy: 0.8949 - val_auc: 0.9656

--- Training history -------------------------------------------------

__results___27_1.png


--- Test Predictions and Metrics -------------------------------------

__results___27_3.png


              precision    recall  f1-score   support

      NORMAL       0.95      0.54      0.69       234
   PNEUMONIA       0.78      0.98      0.87       390

    accuracy                           0.82       624
   macro avg       0.86      0.76      0.78       624
weighted avg       0.84      0.82      0.80       624


=== MODEL EVALUATION FINISHED ========================================

ViT model – Transfer Learning

V rychlejším tempu si vyzkouším i variantu, kdy zkusím použít již dříve trénovaný model na jiné datové sadě. V tomto případě jsem musel sáhnou pro model z produkce Google: Vision Transformer and MLP-Mixer Architectures

Takže potřebuji doinstalovat balíček:

In [16]:


!pip install vit-keras
Collecting vit-keras
  Downloading vit_keras-0.1.2-py3-none-any.whl (24 kB)
Requirement already satisfied: scipy in /opt/conda/lib/python3.10/site-packages (from vit-keras) (1.11.4)
Collecting validators (from vit-keras)
  Obtaining dependency information for validators from https://files.pythonhosted.org/packages/3a/0c/785d317eea99c3739821718f118c70537639aa43f96bfa1d83a71f68eaf6/validators-0.22.0-py3-none-any.whl.metadata
  Downloading validators-0.22.0-py3-none-any.whl.metadata (4.7 kB)
Requirement already satisfied: numpy<1.28.0,>=1.21.6 in /opt/conda/lib/python3.10/site-packages (from scipy->vit-keras) (1.24.3)
Downloading validators-0.22.0-py3-none-any.whl (26 kB)
Installing collected packages: validators, vit-keras
Successfully installed validators-0.22.0 vit-keras-0.1.2

In [17]:


from vit_keras import vit

Připravím si zdrojová dat. Jako již obvykle budu muset načítat jako RGB snímky, neboť právě tak je základní model trénován:

In [18]:


x_train, y_train = get_datasource(DATA_TRAIN, DATA_VALID, flag=cv2.IMREAD_COLOR)
x_test, y_test = get_datasource(DATA_TEST, flag=cv2.IMREAD_COLOR)

data_augmentation = keras.Sequential([
        layers.Normalization(),
        layers.RandomFlip("horizontal"),
        layers.RandomRotation(factor=0.2),
        layers.RandomZoom(height_factor=0.2, width_factor=0.2),
    ], name="data_augmentation")

data_augmentation.layers[0].adapt(x_train)

A takto by mohl vypadat samotný model vycházející z Base16 modelu. Základní model je doplněn o MLP a klasifikační vrstvu:

In [19]:


def create_model_ViTTrans(X_shape, classes=2, name="ViTTrans"):

    def mlp(x, hidden_units, activation='relu', dropout_rate=0.3, name=""):
        for i, units in enumerate(hidden_units):
            x = layers.Dense(units, activation=activation, name=f"{name}_{i}_dense")(x)
            x = layers.Dropout(dropout_rate, name=f"{name}_{i}_dropout")(x)
        return x

    base_model = vit.vit_b16(image_size=IMAGE_SIZE, include_top=False, pretrained_top=False)
    base_model.trainable = False

    inputs = Input(X_shape[-3:], name='inputs')

    x = base_model(inputs, training=False)

#     x = layers.GlobalAveragePooling2D(name=f"global_average")(x)

    x = mlp(x, (1024, 512), name="dense")
    outputs = layers.Dense(classes, activation='softmax', name='outputs')(x)

    return Model(inputs=inputs, outputs=outputs, name=name)

Na závěr vyhodnocení toho, jak mně takový model zafungoval na konkrétní datové sadě:

In [20]:


y_pred = evaluate_model(create_model_ViTTrans(x_train.shape, 2), forced_training=True)
Downloading data from https://github.com/faustomorales/vit-keras/releases/download/dl/ViT-B_16_imagenet21k+imagenet2012.npz
347502902/347502902 [==============================] - 11s 0us/step
/opt/conda/lib/python3.10/site-packages/vit_keras/utils.py:81: UserWarning: Resizing position embeddings from 24, 24 to 14, 14
  warnings.warn(
=== MODEL EVALUATION =================================================

Model: "ViTTrans"
_________________________________________________________________
 Layer (type)                Output Shape              Param #
=================================================================
 inputs (InputLayer)         [(None, 224, 224, 3)]     0
 vit-b16 (Functional)        (None, 768)               85798656
 dense_0_dense (Dense)       (None, 1024)              787456
 dense_0_dropout (Dropout)   (None, 1024)              0
 dense_1_dense (Dense)       (None, 512)               524800
 dense_1_dropout (Dropout)   (None, 512)               0
 outputs (Dense)             (None, 2)                 1026
=================================================================
Total params: 87111938 (332.31 MB)
Trainable params: 1313282 (5.01 MB)
Non-trainable params: 85798656 (327.30 MB)
_________________________________________________________________

--- Model training ---------------------------------------------------

Epoch 1/40
131/131 [==============================] - ETA: 0s - loss: 0.3584 - accuracy: 0.8562 - auc: 0.9295
Epoch 1: val_auc improved from -inf to 0.99368, saving model to /kaggle/working/model/ViTTrans.ckpt
131/131 [==============================] - 87s 556ms/step - loss: 0.3584 - accuracy: 0.8562 - auc: 0.9295 - val_loss: 0.1037 - val_accuracy: 0.9484 - val_auc: 0.9937
Epoch 2/40
131/131 [==============================] - ETA: 0s - loss: 0.1637 - accuracy: 0.9350 - auc: 0.9832
Epoch 2: val_auc did not improve from 0.99368
131/131 [==============================] - 42s 320ms/step - loss: 0.1637 - accuracy: 0.9350 - auc: 0.9832 - val_loss: 0.1097 - val_accuracy: 0.9465 - val_auc: 0.9928
Epoch 3/40
131/131 [==============================] - ETA: 0s - loss: 0.1530 - accuracy: 0.9427 - auc: 0.9851
Epoch 3: val_auc improved from 0.99368 to 0.99759, saving model to /kaggle/working/model/ViTTrans.ckpt
131/131 [==============================] - 68s 523ms/step - loss: 0.1530 - accuracy: 0.9427 - auc: 0.9851 - val_loss: 0.0646 - val_accuracy: 0.9723 - val_auc: 0.9976
Epoch 4/40
131/131 [==============================] - ETA: 0s - loss: 0.1248 - accuracy: 0.9529 - auc: 0.9902
Epoch 4: val_auc did not improve from 0.99759
131/131 [==============================] - 42s 320ms/step - loss: 0.1248 - accuracy: 0.9529 - auc: 0.9902 - val_loss: 0.0670 - val_accuracy: 0.9704 - val_auc: 0.9974
Epoch 5/40
131/131 [==============================] - ETA: 0s - loss: 0.1293 - accuracy: 0.9501 - auc: 0.9888
Epoch 5: val_auc did not improve from 0.99759
131/131 [==============================] - 42s 319ms/step - loss: 0.1293 - accuracy: 0.9501 - auc: 0.9888 - val_loss: 0.0911 - val_accuracy: 0.9608 - val_auc: 0.9957
Epoch 6/40
131/131 [==============================] - ETA: 0s - loss: 0.1269 - accuracy: 0.9508 - auc: 0.9897
Epoch 6: val_auc did not improve from 0.99759
131/131 [==============================] - 42s 320ms/step - loss: 0.1269 - accuracy: 0.9508 - auc: 0.9897 - val_loss: 0.0839 - val_accuracy: 0.9570 - val_auc: 0.9957
Epoch 7/40
131/131 [==============================] - ETA: 0s - loss: 0.1106 - accuracy: 0.9620 - auc: 0.9916
Epoch 7: val_auc improved from 0.99759 to 0.99888, saving model to /kaggle/working/model/ViTTrans.ckpt
131/131 [==============================] - 68s 519ms/step - loss: 0.1106 - accuracy: 0.9620 - auc: 0.9916 - val_loss: 0.0445 - val_accuracy: 0.9819 - val_auc: 0.9989
Epoch 8/40
131/131 [==============================] - ETA: 0s - loss: 0.1223 - accuracy: 0.9513 - auc: 0.9905
Epoch 8: val_auc did not improve from 0.99888
131/131 [==============================] - 43s 325ms/step - loss: 0.1223 - accuracy: 0.9513 - auc: 0.9905 - val_loss: 0.0722 - val_accuracy: 0.9656 - val_auc: 0.9970
Epoch 9/40
131/131 [==============================] - ETA: 0s - loss: 0.0954 - accuracy: 0.9634 - auc: 0.9939
Epoch 9: val_auc did not improve from 0.99888
131/131 [==============================] - 42s 322ms/step - loss: 0.0954 - accuracy: 0.9634 - auc: 0.9939 - val_loss: 0.0469 - val_accuracy: 0.9780 - val_auc: 0.9989
Epoch 10/40
131/131 [==============================] - ETA: 0s - loss: 0.0989 - accuracy: 0.9618 - auc: 0.9939
Epoch 10: val_auc improved from 0.99888 to 0.99959, saving model to /kaggle/working/model/ViTTrans.ckpt
131/131 [==============================] - 68s 523ms/step - loss: 0.0989 - accuracy: 0.9618 - auc: 0.9939 - val_loss: 0.0256 - val_accuracy: 0.9924 - val_auc: 0.9996
Epoch 11/40
131/131 [==============================] - ETA: 0s - loss: 0.1069 - accuracy: 0.9611 - auc: 0.9925
Epoch 11: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 322ms/step - loss: 0.1069 - accuracy: 0.9611 - auc: 0.9925 - val_loss: 0.0495 - val_accuracy: 0.9780 - val_auc: 0.9986
Epoch 12/40
131/131 [==============================] - ETA: 0s - loss: 0.0987 - accuracy: 0.9611 - auc: 0.9932
Epoch 12: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 322ms/step - loss: 0.0987 - accuracy: 0.9611 - auc: 0.9932 - val_loss: 0.0410 - val_accuracy: 0.9828 - val_auc: 0.9990
Epoch 13/40
131/131 [==============================] - ETA: 0s - loss: 0.0893 - accuracy: 0.9656 - auc: 0.9950
Epoch 13: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 322ms/step - loss: 0.0893 - accuracy: 0.9656 - auc: 0.9950 - val_loss: 0.0484 - val_accuracy: 0.9771 - val_auc: 0.9986
Epoch 14/40
131/131 [==============================] - ETA: 0s - loss: 0.0869 - accuracy: 0.9692 - auc: 0.9950
Epoch 14: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 323ms/step - loss: 0.0869 - accuracy: 0.9692 - auc: 0.9950 - val_loss: 0.0638 - val_accuracy: 0.9704 - val_auc: 0.9976
Epoch 15/40
131/131 [==============================] - ETA: 0s - loss: 0.0904 - accuracy: 0.9694 - auc: 0.9943
Epoch 15: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 323ms/step - loss: 0.0904 - accuracy: 0.9694 - auc: 0.9943 - val_loss: 0.0488 - val_accuracy: 0.9771 - val_auc: 0.9986
Epoch 16/40
131/131 [==============================] - ETA: 0s - loss: 0.0842 - accuracy: 0.9697 - auc: 0.9954
Epoch 16: val_auc did not improve from 0.99959
131/131 [==============================] - 44s 336ms/step - loss: 0.0842 - accuracy: 0.9697 - auc: 0.9954 - val_loss: 0.1063 - val_accuracy: 0.9522 - val_auc: 0.9934
Epoch 17/40
131/131 [==============================] - ETA: 0s - loss: 0.0836 - accuracy: 0.9689 - auc: 0.9954
Epoch 17: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 322ms/step - loss: 0.0836 - accuracy: 0.9689 - auc: 0.9954 - val_loss: 0.0649 - val_accuracy: 0.9704 - val_auc: 0.9977
Epoch 18/40
131/131 [==============================] - ETA: 0s - loss: 0.0831 - accuracy: 0.9694 - auc: 0.9953
Epoch 18: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 323ms/step - loss: 0.0831 - accuracy: 0.9694 - auc: 0.9953 - val_loss: 0.0333 - val_accuracy: 0.9876 - val_auc: 0.9994
Epoch 19/40
131/131 [==============================] - ETA: 0s - loss: 0.0770 - accuracy: 0.9697 - auc: 0.9959
Epoch 19: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 322ms/step - loss: 0.0770 - accuracy: 0.9697 - auc: 0.9959 - val_loss: 0.1107 - val_accuracy: 0.9542 - val_auc: 0.9921
Epoch 20/40
131/131 [==============================] - ETA: 0s - loss: 0.0854 - accuracy: 0.9680 - auc: 0.9952
Epoch 20: val_auc did not improve from 0.99959
131/131 [==============================] - 42s 322ms/step - loss: 0.0854 - accuracy: 0.9680 - auc: 0.9952 - val_loss: 0.0706 - val_accuracy: 0.9675 - val_auc: 0.9973

--- Training history -------------------------------------------------

__results___37_3.png


--- Test Predictions and Metrics -------------------------------------

__results___37_5.png


              precision    recall  f1-score   support

      NORMAL       0.99      0.32      0.49       234
   PNEUMONIA       0.71      1.00      0.83       390

    accuracy                           0.75       624
   macro avg       0.85      0.66      0.66       624
weighted avg       0.81      0.75      0.70       624


=== MODEL EVALUATION FINISHED ========================================

Sdílet

  • 24. 3. 2024 21:18

    Jakub Lobodáš

    Ano musím uznat, že sepsání článku a celkově vysvětlení je super.
    Jen mě osobně děsí, že by rtg snímek popisoval bohužel program....
    Myslím si, že XXX variant co všechno tam může být a pro program je to sněď bílého, šedého a černého. Nic víc... V tomhle by možná, ale opravdu možná mohla uspět AI, kdy dostane databázi nemocních snímku třeba z nemocnice se 100% nechybovém vyhnodnocení. Pak ano, ale pogram rozhodně ne...